A New Strategy for Short-Term Load Forecasting
نویسندگان
چکیده
and Applied Analysis 3 is the order of regular differences and φ(B) and θ(B) are, respectively, defined as follows φ (B) = 1 − φ 1 B − φ 2 B 2 − ⋅ ⋅ ⋅ − φ p B p θ (B) = 1 − θ 1 B − θ 2 B 2 − ⋅ ⋅ ⋅ − θ q B q . (5) Random errors, ε t , are assumed to be independently and identically distributed with a mean of zero and a constant variance of σ, and the roots of φ(x) = 0 and θ(x) = 0 all lie outside the unit circle [21]. Equation (1) entails several important special cases of the ARIMA family of models. If q = 0, then (1) becomes an AR model for order p. When p = 0, the model reduces to an MA model of order q. One central task of ARIMAmodel building is to determine the appropriate model order (p, q). Similarly, a seasonal model (p, d, q)(P,D,Q) s can be written as follows (using the second expression): φ p (B)Φ p (B s ) (1 − B) d (1 − B s ) D
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملApplication of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market
Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کامل